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INTRODUCTION 

Reliable capital projections are necessary for management purposes. For an insurer operating in the 

Solvency II context, dynamic management actions in the model should reflect the Solvency II 

coverage ratios in the projection. However, a brute-force calculation of future Solvency II coverage 

ratios would be numerically burdensome. Having applied Least Squares Monte Carlo (LSMC) to the 

1-year value-at-risk calculation in [5], we show in the current article how to extend a one-year 

application of LSMC to the multi-year setting. 

1.1 Motivation 

For management of insurance business, it is of utmost importance to understand how future capital 
requirements and capital coverage evolves under different scenarios. The availability of this 
information allows the management to react to foreseeable capital shortages by taking appropriate 
actions.  
 
If the insurance undertaking uses an Internal Model, then it is expected to demonstrate that their 
Internal Model plays an important role in the undertaking’s system of governance, in particular in their 
risk management process and their decision making process – in the sense of the Use Test as laid 
out in the Article 120 of the Solvency II directive [1]. With the Solvency II capital coverage set to play 
an important role in the decision making process, a realistic actuarial projection model for Solvency II 
purposes should incorporate management actions based on the undertaking’s current Solvency II 
balance sheet numbers in any given projection year. This naturally leads us to the challenge of 
reasonably estimating Solvency II coverage ratios when assets and liabilities are being projected over 
time according to a whole set of valuation scenarios (e.g. for MCEV calculations). 
 
Apart from the “Solvency II Pillar I” motivation outlined above, there also are regulatory requirements 
to provide capital projections in the context of Pillar II. According to the Article 45 of the Solvency II 
directive [1], every insurance undertaking shall conduct its own risk and solvency assessment 
(ORSA). In particular: 
 
…The own risk and solvency assessment shall be an integral part of the business strategy and shall 
be taken into account on an ongoing basis in the strategic decisions of the undertaking. 
 
Furthermore, the Consultation Paper 008/2011 [2] provides the following interpretation of the directive: 
 
…The undertaking’s assessment of the overall solvency needs should be forward-looking. 
 
…The undertaking needs to project its capital needs over its business planning period. This projection 
is to be made considering likely changes to the risk profile and business strategy over the projection 
period and sensitivity to the assumptions used.  
 
In other words, the Solvency II coverage ratios should be assessed over a period of 5 years along 
some deterministic path(s) considered for business planning purposes. 
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Both applications require a robust and flexible framework that allows for a projection of the Solvency II 
coverage ratios over a certain period given some development of the portfolio of assets and liabilities 
and financial market conditions. 
 
1.2 Calculation of future Solvency II coverage ratios   

The task of estimating future Solvency II coverage ratios for a mid-term or long-term projection period 
is much more daunting than the assessment of Solvency I coverage ratios. Whereas Solvency I 
coverage ratios can be deduced rather easily from standard balance sheet projection data, calculation 
of future Solvency II coverage ratios would theoretically require a nested simulation approach.  
 
With the nested simulation approach being extremely demanding in terms of run-times, the 
alternatives, the standard formula or the so-called proxy modeling techniques, such as Replicating 
Portfolios [3], Curve Fitting [4] or Least Squares Monte Carlo (LSMC) have become quite popular. In 
our previous paper [5], we showed how to apply LSMC in order to generate a 1-year probability 
distribution forecast. The series of articles [6], [7] and [8] shows why these approaches can give robust 

approximations if properly applied, gives confidence intervals for the coefficients of the proxies and an error-
estimation in terms of SCR. 
 
 

1.3 Scope and structure of the paper 

In the current paper, we are going to extend the LSMC techniques applied to the 1-year setting in [5] 
to the multi-year setting. The remainder of our paper is organized as follows: 
 

 In Section 2, we show how to estimate some economic liability variables such as PVFP 
(Present Value of Future Profits) or BEL (Best Estimate Liability) for an arbitrary projection 
year t. 

 In Section 3, we discuss possibilities to estimate Solvency II required and available capital 
based on the above. 

 In Section 4, we show how the concepts introduced above perform in a realistic German case 
study. 

 In Section 5, we draw conclusions from our results and outline some directions for further 
research. 

 
 
2 Estimation of economic liability variables for future projection years 

Our goal is to determine the required capital, SCR, and the available capital, also called own funds, of 
a portfolio of assets and liabilities not only at time 0 but also for future times t > 0. The development of 
the portfolio of assets and liabilities from time 0 to time t as well as the financial market conditions at 
time t is given by the context: 

 

 When performing stochastic valuation runs e.g. for MCEV purposes these data are a part 
of the valuation scenarios and their influence on the assets and liabilities when projecting 
those over time.   

 For ORSA purposes, this information is based on assumptions of the business plan. 
Typically it is assumed that assets earn a best-estimate return and financial conditions 
evolve smoothly. The business plan thus prescribes one deterministic path for the risk-
factors governing the financial condition of the portfolio. It is good practice however to 
also analyse the capital projection under a small number of different scenarios which are 
relevant for the portfolio, e.g. a low interest rate scenario, asset shocks etc. 

 
In other words, the challenge is to determine the relevant key indicators, SCR and own funds, for a 
large number of scenarios and t>0. The straightforward solution for this problem would be a nested 
simulation approach (cf. Figure 1), where the PVFP or the BEL for each scenario and time t is 
evaluated by using, say, 1000 risk neutral scenarios, each of which calibrated to the scenario and 
time t. In order to obtain the SCR, one might want to run such evaluations for thousands of different 
realizations of the risks under a 1-year horizon covering the time step from t to t+1.    
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Figure 1: Nested stochastics approach 

 

The risk drivers at time t will not be sufficient to explain the liability value since they do not take into 
account the values of the risk drivers at T=0,…,t-1. Clearly the historic path of the risk drivers affects 
the financial situation of the company and thus has an impact on the liability value at time t as well. An 
insurance company with sufficient buffers, such as unrealised gains, might better sustain a fall in 
interest rates than a similar company without any such buffers. Thus, in theory we would have to 
create simulations of all historic paths as well and determine a proxy which approximates the liability 
value as function of all risk drivers at all times T=0,…,t-1 and at T=t. This does not sound too onerous 
as the calibration simulations typically evolve from T=0 on and thus the simulations create paths 
including T=1,..,t-1. But the calibration process becomes very cumbersome as the dimension of the 
risk driver space becomes very large. Therefore, further explanatory variables, so-called state 
variables               , such as premium income, reserves or unrealised gains must be included in 
the data used to capture the impact of the history of the risk drivers; their values incorporate the 
historic path of the risk drivers.  

 
In order to obtain a full functional relationship between the liability value   , the risk drivers in t=0 and 
the state variables we just regard the state variables as risk drivers in time t and redefine the set of 
risk drivers:           . Then we perform an ordinary least squares regression for each t>0 under 
consideration and get a functional relationship 

       ∑                  

    

   

  

where     
                 form a set of      basis functions. Even though each   

   
 would be 

a rough estimation for the corresponding liability value, the regression generates a refined and more 

accurate liability value where the errors in the   
   

 are being diversified away as described in [5], 

[6],[7] and [8] by the least squares estimator  
 

Having performed the fitting process, we can estimate the liability value at time t for any particular 
simulation evaluating the liability function ft for the current values of the risk drivers and state variables 
of the corresponding simulation. 
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3 Calculation of Solvency II coverage ratios for future years 

Firstly, we have to calculate the required capital (SCR). There are several ways of using the liability 
function - which has been calibrated using the methodology described in Section 2 - in order to 
calculate the SCR for a particular scenario and projection year: 

 
I. Assume that the risk drivers r1t,…,rht now, in contrast to the calibration context of Section 2, 

follow some real world distribution and generate m realisations of these risk drivers. Evaluate 
the liability function for these m risk driver tuples, where the state variables s1t,…,slt are set to 
the levels corresponding to the projection scenario considered, in order to adjust the liability 
function to the proper information on the past and current situation of the company. These m 
realizations of the liability values are used to derive the full distribution of the liability value for 
t>0 and the scenario. The corresponding SCR can be calculated as the difference between 
the liability value at base level and the corresponding 99.5% quantile of the distribution of the 
liability value as usual. Of course this estimation involves a stochastic estimation error as well. 
 

II. Use a standard formula – style approach. Stress each risk driver individually and evaluate the 
liability function for this single stress, with all other risk drivers and state variables set to the 
levels corresponding to the projection scenario considered.  This will lead to h individual 
Solvency Capital Requirements               at time t for the scenario considered. 

Aggregate these SCR via a covariance approach based on some correlation assumptions, i.e.  

     √∑             

   

 

where     is the correlation between the individual risks. 

  
In the subsequent case study, we focus on the standard formula – style approach for the sake of 
simplicity.  
 
Secondly, we have to calculate the available capital (ASM). We perform our ASM calculations via the 
following steps: 
 

- Evaluate the current BEL via the corresponding liability function. 
- Calculate the risk margin (RM)

1
. For the sake of simplicity, we estimate RM via a cost-of-

capital approach based on the individual SCR values for the individual non-hedgeable risks, 
obtained using the approach II above. 

- Calculate the ASM by subtracting BEL and RM from the market value of assets. 
 
 
4 Case Study 

4.1 Setup 

In this section we discuss a detailed case study dealing with LRA, a fictitious German life insurer. Its 
liability portfolio mainly consists of endowments and annuities, but also includes unit-linked and level 
term contracts. The asset portfolio of LRA mainly consists of bonds (86% of all assets), but also 
features some property (7%), equity (5%) and cash (2%). 
 
The liabilities include EUR 2 billion in unit-linked reserves and EUR 8 billion in reserves for traditional 
products, of which EUR 7.7 billion represent endowment and annuity contracts, whereas EUR 0.3 
billion of reserves stem from level term contracts. The policyholder bonus reserve called RFB 
amounts to EUR 0.8 billion, out of which 0.32 billion amount to the so-called free RFB liability buffer: 
 
German background info: RFB is the German policyholder bonus reserve. Part of it – the so-called 
“tied RFB” – covers the bonus payments officially declared for the following year. Another part of it – 
the terminal bonus reserve – covers the future terminal bonus payments for contracts which mature 

                                                 
1
 One could have chosen a somewhat different approach to the calculation of Solvency II coverage ratios. Yet whatever the choice be, the theory 

described above would supply those economic variables required as the ingredients for the methodology chosen. 
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after the following year. The remainder of the RFB – the so-called “free RFB” – is not tied to any 
particular payment to a particular policyholder. The free RFB is meant to cover some future bonus 
payments to policyholders. However, under the German law, the insurer might seek the regulator’s 
approval for usage of parts of free RFB in order to avoid bankruptcy in a financially distressed 
scenario. Thus, the free RFB is an important buffer protecting shareholders of a German insurer from 
future capital injections to a certain extent.  
 
The endowment and annuity contracts mentioned above have an average guarantee interest rate of 
about 3.4%, which is typical for the German market. In the current low interest rate environment, 
these guarantees are onerous. Moreover, the business model of German life insurance is highly 
asymmetric in the following sense: 
 

 In “good” scenarios with rather high investment returns, about 90% of these investment 
returns are passed on to the policyholders according to German regulatory requirements. 

 In “bad” scenarios, in which the investment returns do not meet the guarantees, up to 100% 
of the losses have to be carried by the shareholders, if the insurance company cannot use 
any buffers anymore to fund the shortfall. 

 
In this context, the LRA reports a dangerously low Solvency II coverage ratio of 78% at projection 
start calculated using an internal model. This result well reflects the strain which the current interest 
rates put upon some German insurers in the regulatory context mentioned above, if the insurer – like 
the LRA – has seen its buffers

2
 all but vanish in the challenging market environment in 2008-2012.  

 
If the LRA had had strong buffers at projection start, then it would avoid shareholder capital injections 
in several bad scenarios to come, yielding a lesser asymmetry in the sense described above, that is to 
say, a lower TVOG and a higher Solvency II coverage ratio. Without sizeable buffers at projection 
start, the LRA features a pronounced asymmetry in its business model. This will result in a highly non-
linear dependency of LRA’s value upon risk drivers such as interest rates, allowing for a challenging 
case study. 
 

4.2 Methodology and Results 

Due to the information given in Section 4.1 we can identify the following risk drivers as relevant for the 
LRA:  
 

 interest rates, 

 equity, 

 lapse, 

 longevity, 

 mortality.  
 
The variable of interest is the PVFP (Present Value of Future Profits). We set a simulation budget of 
50’000 scenarios in order to cover a variety of economic situations. For the calibration of the liability 
function for each year t > 0 we choose the 10-year zero coupon bond price and the equity 
performance at time t as explanatory variables since those are particularly helpful to capture the 
market conditions. The insurance risks under consideration are lapse risk, mortality risk and longevity 
risk. These risks are parameterized as multiplicative adjustments applied to the individual base levels. 
Hence, the lapse risk is expressed by a lapse factor with values between, say, 0.5 and 1.5. A lapse 
factor of 0.5 signifies a reduction of all lapse rates by the factor 0.5, whereas a lapse factor of 1 refers 
to the unstressed level of lapse rates. In order to take the buffers of the LRA into account, we consider 
the free RFB as additional state variable. 
 
Following a standard formula approach for the determination of the SCR by means of the liability 
function, we use QIS5 shock levels and correlations between the individual risks in order to obtain the 
aggregated SCR. The aggregated SCR is furthermore adjusted for the operational risk, simply by 

                                                 
2
 An example for an asset buffer would be an equity market value well in excess of the corresponding fund accounting value. An example for a 

liability buffer would be a high free RFB. 
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deriving the operational risk per scenario and time step as defined in the QIS5 technical specifications 
[9]. 
 
For our case study, we define the Solvency II coverage ratio as quotient of Available Solvency Margin 
(ASM) and the overall SCR, where we set the ASM to PVFPbase adjusted by the statutory value of the 
shareholder’s equity. 
 
Remark: Needless to say, our approach can be also applied to other definitions of the Solvency II 
coverage ratio. 
 
Having calibrated a liability function for each year t > 0 based on the data from the calibration run we 
want to illustrate its application for two different purposes:  
 

 Projecting Solvency II coverage ratios for MCEV type valuation runs. 

 Assessing the Solvency II coverage ratio for a set of ORSA planning scenarios. 
 
Before using the calibrated liability functions for the projection of Solvency II coverage ratios we 
examine the asymptotic behavior of the liability function for different liability functions to get some 
flavor for their shape and predictive character. 
 

 

Figure 2 : Plot of PVFP against 10-year spot rate for fixed levels of policyholder bonus reserve 
at t=3 
 

Figure 2 exhibits the dependency of the PVFP upon the 10-year spot rate at three different fixed 
levels of free RFB – denoted as “low”, “medium” and “high” - please see Section 4.1 for some 
background info about the notion of free RFB.  
 
If the interest rates are high, then the level of free RFB hardly influences the PVFP. This is because 
the possibility of a burn-through – which a high free RFB could help to stave off - is remote anyway. 
However, the free RFB can play a decisive role in times of low interest rates. With a solid free RFB 
buffer, an insurer could navigate its way through such an environment without running a high risk of 
shareholder capital injections. In other words: If the interest rates are not sufficient in order to earn the 
average guarantee rate, then the absence of a buffer leads to losses for shareholders.  
 
Our learning from the above observation is that explanatory variables can replace a full set of history 
of the “pure” risk drivers such as interest rates or lapses. The free RFB clearly helps “explain” the 
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PVFP – at least if the interest rates are rather low, the free RFB level has a strong impact upon the 
PVFP.  
 
Figure 3 shows how the PVFP at t=5 depends on interest rates and lapses. A combination of low 
interest rates and low lapses leads to an especially low PVFP, since these interest rates are below the 
average guarantee rate. If the lapses rise with the interest rates kept low, then the PVFP improves – 
indeed, lapses bring some relief from the guarantee burden. If the interest rates are high and the 
lapses are low, then the PVFP is high because of interest rate gains. If the lapses rise with the interest 
rates kept high, then the PVFP decreases – indeed, lapses reduce the base for the interest rate gains. 

 

 

Figure 3: Two-dimensional risk dependency for PVFP at t=5. 
 

4.2.1 Projecting Solvency II coverage ratios for MCEV type valuation runs 

We perform two valuation runs and calculate the corresponding Solvency II coverage ratio for each 
time step from t > 0. For each time step t, we count the number of simulations with 
 

 Solvency II coverage ratio < 33%
3
 (red area), 

 Solvency II coverage ratio > 33% and < 100% (yellow area), 

 Solvency II coverage ratio > 100% (green area). 
 
Here, the first valuation run is performed on the base MCEV scenarios, while the second valuation run 
is performed in the context of an interest rate down stress. Both valuation runs have been performed 
with 1000 scenarios each; the tables below display the distribution of the Solvency II coverage ratios 
in terms of the frequency of red, yellow and green areas for the first 5 years of projection.  
 

                                                 
3
 Of course other thresholds than those given above could be used as well. In practice, one could infer such thresholds from the regulator’s 

intervention ladder or from a board decision. 
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Remark: It is beyond the scope of the current paper to evaluate particular Solvency II – driven 
management actions based on Solvency II coverage ratios. While a wide range of possible actions in 
such different areas as strategic asset allocation and profit sharing is conceivable, this is a significant 
challenge in its own right which will be discussed in a separate paper. 
 

 

Figure 4: Distribution of Solvency II coverage ratios over 1000 MCEV base scenarios. 
 

 

 

 

Figure 5: Distribution of Solvency II coverage ratios over 1000 interest rate down scenarios. 
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Figures 4 and 5 clearly indicate that a downward interest rate shock would significantly decrease the 
Solvency II coverage ratios. This is an obvious consequence of the LRA’s interest rate guarantees, 
see Section 4.1.  
 
Secondly, we can see the Solvency II coverage ratios improve over time – both in the base valuation 
and in the stress valuation. This “drift” is partially due to economic reasons such as the gradual 
change in the portfolio mix – the increasing weight of young sub-portfolios with low interest rate 
guarantees and the decreasing weight of older sub-portfolios with high interest rate guarantees – and 
partially due to the closed fund modeling approach. 
 
In order to get some indication for the plausibility of the Solvency II coverage ratios, we consider two 
exemplary paths from the base scenario set. For these paths, we display the corresponding Solvency 
II coverage ratios per year (cf. Table 1) and try to explain why these seem appropriate under 
consideration of the particular characteristics of the corresponding path.  
 

 t = 1 t = 2 t = 3 t = 4 t = 5 

Simulation 1 62% 103% 156% 34% 79% 
Simulation 963 28% 66% 47% 40% 28% 

 

Table 1: Solvency II coverage ratios for two different simulations of the MCEV base        
scenarios. 

 

Simulation 1 (cf. Table 1 and Figure 6) 
In the first 3 projection years, we observe a rise of interest rates (in particular, the 1-year rates rise 
sharply from 1.11% at t=0 to 2.57% at t=3, whereas longer-term interest rates also rise, albeit more 
moderately), which improves the company’s position with respect to the cost of guarantees. 
Furthermore, we observe a rise of the equity index (from 1.0 to 1.62) and a rise of the property index 
(from 1.0 to 1.3) over these years. Due to the above developments, the Solvency II coverage ratio 
improves from 78% at t=0 to 103% at t=2 and 156% at t=3.   
 
Over the next two projection years (t=4 resp. t=5), we see the equity index plummet to 1.09 resp. 
0.58. Meanwhile, the property index declines to 1.21 resp. 1.10. The 10-year rates fall from 3.72% at 
t=3 to 3.43% at t=4, but rise again to 3.76% at t=5. The Solvency II coverage ratio plummets from 
156% at t=3 to 34% at t=4, as the company’s buffers erode. The ratio improves to 79% at t=5, as the 
rising interest rates let the TVOG decrease.  
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Figure 6: Interest rate yields and indices for simulation 1 

 

Simulation 963(cf. Table 1 and Figure 7) 
In the first projection year, the interest rates decline significantly – e.g. the 10-year rate falls from 
3.57% to 2.66% - this increases the TVOG and causes a decline of the Solvency II coverage ratio 
from 78% at t=0 to 28% at t=1. A corresponding upward move of the interest rates in the second year 
– up to 3.34% for the 10-year rate – triggers a corresponding recovery of the Solvency II coverage 
ratio to 66%. In the following projection years (t=3 to t=5), the interest rates gradually decline, which 
causes a steady decline of the Solvency II coverage ratio, all the way to 28% at t=5. 
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Figure 7: Interest rate yields and indices for simulation 963 

 

4.2.1 Solvency II coverage ratio for a set of ORSA planning scenarios 

In order to illustrate how our approach can be used for ORSA purposes, we suppose that the LRA’s 
management has decided to analyze the capital projection under a set of 5 planning scenarios that 
include constant interest rates for 5 years on three different levels as well as a rise of interest rates 
after 3 years and a scenario with particular low interest rate level outlook (cf. Figure 8). For the sake 
of simplicity, the management assumes that interest rate curves are always flat and equity returns 
exceed the interest rate yield by +200bp. 
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Figure 8: Interest rate yields for 5 different ORSA planning scenarios 

 

 t = 1 t = 2 t = 3 t = 4 t = 5 

Scenario 1 -75% -48% -16% 0% -38% 
Scenario 2 26% 44% 77% 62% 86% 
Scenario 3 93% 96% 100% 119% 147% 

Scenario 4 -75% -48% 82% 170% 140% 
Scenario 5 -75% -48% -105% -153% -227% 

 

Table 2: Solvency II coverage ratios for 5 different ORSA planning scenarios. 

 

The resulting Solvency II coverage ratios for the 5 different ORSA planning scenarios are displayed in 
Table 2. Scenarios 1 and 5 display a particularly bleak outlook, which is clearly due to the low interest 
rate yields combined with an average guarantee level of 3.4% at the start of the projection. Note that 
the negative Solvency II coverage ratios stem from a negative value of the own funds.  
 
Interest rate yields of 3% combined with equity returns of 5% as seen in scenario 2 lead to a 
subsequent rise of the coverage ratio over the planning period where the yellow areas indicate that 
the economic situation of the LRA remains tense in this scenario.  
 
Starting with a Solvency II coverage ratio of 78% in t=0 the relatively high interest rate yields of 
scenario 3 lead to an economic recovery, with the green area reached after 3 years. A similar 
statement holds for scenario 4 where interest rate yields rise towards 4%. 
 
 
5 Conclusions 

A robust framework for the projection of Solvency II coverage ratios under different kinds of scenarios 
is a vital tool for insurers:  
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 It yields input for management rules of actuarial projection systems and helps to comply with 
Use test demands.     

 A forecast of Solvency II coverage ratios throughout a mid-term planning horizon is necessary 
to manage the business and for ORSA purposes. 

 
Whereas a brute-force nested stochastic approach is numerically burdensome, a proxy modeling 
solution via Least Squares Monte Carlo is well-feasible. 
   
In the first step, one estimates the values of an economic balance sheet variable such as PVFP or 
BEL for every scenario and projection year within the planning horizon. This ground-laying economic 
variable is expressed as a function of several explanatory variables. The latter do not only include all 
the relevant market and actuarial risk drivers at time T as would have been sufficient for a 1-year VaR 
calculation. Some additional state variables are necessary in our multi-year application. Indeed, in 
order to evaluate the Solvency II position of the insurer in a projection year t>1 of a particular 
scenario, one has to take the “history” [0, t-1] of the insurer in that scenario into account. This is 
approximated by adding some state variables, e.g. those which carry information about the company’s 
buffers. 
 
In the second step, the Solvency II results can be estimated from the results of the first step. For the 
sake of simplicity, one may calculate the individual SCRs for each risk driver and aggregate these 
using a correlation approach. Of course, more sophisticated approaches are also possible. 
 
We have seen how these approaches apply to a realistic German case study. There is no “absolute 
truth” as to which is the theoretically correct Solvency II coverage ratio for an insurer in a particular 
scenario and a particular projection year – such numbers depend on a number of important 
assumptions and are thus prone to some uncertainty. However, we have shown that an extension of a 
well-established 1-year application of LSMC to the multi-year setting provides a powerful vehicle for 
Solvency II forecasts.  
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